Loss Functions for Deep Metric Learning Using Binary Supervision and Beyond

Suha Kwak suha.kwak@postech.ac.kr

Graduate School of Artificial Intelligence Dept. of Computer Science and Engineering

Metric Learning

How much similar/dissimilar semantically?

Metric: Function that quantifies a distance Metric Learning: Learning a metric from a set of data

Applications

Content-based image retrieval

Face verification/identification^[1]

[1] FaceNet: A unified embedding for face recognition and clustering, CVPR 2015

Applications

Person re-identification^[2]

Patch matching/stereo imaging^[3]

[2] Beyond triplet loss: a deep quadruplet network for person re-identification, CVPR 2017[3] Learning to compare image patches via convolutional neural networks, CVPR 2015

Deep Metric Learning

Learning a deep embedding network f so that semantically similar images are closely grouped together

Distance = Semantic dissimilarity

 \mathbf{X}_{i}

 \mathbf{X}_k

 $\rightarrow f(\mathbf{x}_j)$ ---

 $f(\mathbf{x}_k)$ --

This quality of the embedding space is mainly determined by **loss functions** used for training the network.

Proxy Anchor Loss for Deep Metric Learning

Sungyeon Kim Dongwon Kim Minsu Cho Suha Kwak

{tjddus9597, kdwon, mscho, suha.kwak}@postech.ac.kr

Well-known Examples of Metric Learning Losses

• Triplet rank loss^[1]

$$\ell_{\rm tri}(a,p,n) = \left[D(f_a, f_p) - D(f_a, f_n) + \delta \right]_+$$

[1] FaceNet: A unified embedding for face recognition and clustering, CVPR 2015

Well-known Examples of Metric Learning Losses

• Proxy NCA loss^[6]

$$\ell_{\text{proxyNCA}}(B) = \sum_{i \in B} \left\{ D(f_i, p^+) - \log \sum_{p^- \in P^-} \exp\left(-D(f_i, p^-)\right) \right\}$$

[6] No fuss distance metric learning using proxies, ICCV 2017

Two Categories of Existing Metric Learning Losses

• Pair-based losses

- (+) Exploiting *data-to-data relations*, fine-grained relations between data
- (–) Prohibitively high training complexity
- Examples
 - Contrastive loss^[4]

$$\ell_{\rm ctr}(i,j) = y_{ij} D(f_i, f_j)^2 + (1 - y_{ij}) [\delta - D(f_i, f_j)]_+^2$$

• Triplet rank loss^[1]

$$\ell_{\rm tri}(a,p,n) = \left[D(f_a,f_p) - D(f_a,f_n) + \delta \right]_+$$

• N-pair loss^[5]

$$\ell_{\rm NP}(a, p, n_1, \dots, n_{N-1}) = \log\left(1 + \sum_{i=1}^{N-1} \exp\left(D(f_a, f_p) - D(f_a, f_{n_i})\right)\right)$$

[1] FaceNet: A unified embedding for face recognition and clustering, CVPR 2015[4] Learning a similarity metric discriminatively with application to face verification, CVPR 2005[5] Improved deep metric learning with multi-class N-pair loss objective, NeurIPS 2016

Two Categories of Existing Metric Learning Losses

- Proxy-based losses
 - Proxy
 - Representative of a subset of training data
 - Learned as a part of the network parameters
 - Taking each data point as an anchor and associating it with proxies
 - (+) Lower training complexity, faster convergence in general
 - (+) More robust against label noises and outliers
 - (–) Leveraging impoverished data-to-proxy relations only
 - Example: Proxy-NCA loss^[6]

$$\ell_{\text{proxyNCA}}(B) = -\sum_{i \in B} \log \frac{\exp(-D(f_i, p^+))}{\sum_{p^- \in P^-} \exp(-D(f_i, p^-))}$$

Two Categories of Existing Metric Learning Losses

"Data-to-data relations" *Rich and fine-grained Demanding high training complexity* "Data-to-proxy relations" *Reducing training complexity Impoverished information*

Our Method

- A new proxy-based loss called proxy anchor loss
 - Taking only advantages of both categories
 - Overcoming their limitations
- How it works
 - Using a proxy as an anchor, and associating it with all data in a batch
 - Fast convergence thanks to the use of proxies
 - Taking data-to-data relations into account by allowing data points to interact with each other during training
- Results
 - State-of-the-art performance
 - Fastest convergence (on the Cars-196 dataset)

Our Method

Recall@1 vs. training epochs on the Cars-196 dataset

Details of Proxy Anchor Loss

• Mathematical form and its interpretation

$$\ell(B) = \frac{1}{|P^+|} \sum_{p \in P^+} \log\left(1 + \sum_{i \in B_p^+} \exp\left[-\alpha(S(f_i, p) - \delta)\right]\right)$$
$$+ \frac{1}{|P|} \sum_{p \in P} \log\left(1 + \sum_{j \in B_p^-} \exp\left[\alpha(S(f_j, p) + \delta)\right]\right)$$

$$= \frac{1}{|P^+|} \sum_{p \in P^+} \left[\text{SoftPlus} \left(\underset{i \in B_p^+}{\text{LSE}} - \alpha(S(f_i, p) - \delta) \right) \right] \\ + \frac{1}{|P|} \sum_{p \in P} \left[\text{SoftPlus} \left(\underset{j \in B_p^-}{\text{LSE}} \alpha(S(f_j, p) + \delta) \right) \right]$$

S(·,·) Cosine similarity

SoftPlus A smooth approx. of ReLU

LSE

A smooth approx. of MAX

Details of Proxy Anchor Loss

• Mathematical form and its interpretation

$$\ell(B) = \frac{1}{|P^+|} \sum_{p \in P^+} \left[\text{SoftPlus} \left(\frac{\text{LSE}}{i \in B_p^+} - \alpha(S(f_i, p) - \delta) \right) \right] \\ + \frac{1}{|P|} \sum_{p \in P} \left[\text{SoftPlus} \left(\frac{\text{LSE}}{i \in B_p^-} \alpha(S(f_j, p) + \delta) \right) \right]$$

Regarding LSE as MAX: pull p and its hardest positive example together, push p and its hardest negative example apart.

In practice pull/push all embedding vectors in the batch, but with different degrees of strength determined by their relative hardness.

Details of Proxy Anchor Loss

• Analysis on its gradients

$$\frac{\partial \ell(B)}{\partial S(f_i, p)} = \begin{cases} \frac{1}{|P^+|} \frac{-\alpha h_p^+(f_i)}{1 + \sum_{j \in B_p^+} h_p^+(f_j)}, & \forall i \in B_p^+, \\ \frac{1}{|P|} \frac{\alpha h_p^-(f_i)}{1 + \sum_{k \in B_p^-} h_p^-(f_k)}, & \forall i \in B_p^-, \end{cases}$$
where

 $h_p^+(f) = \exp[-\alpha(S(f,p) - \delta)]$: Positive hardness metric $h_p^-(f) = \exp[\alpha(S(f,p) + \delta)]$: Negative hardness metric

The gradient w.r.t. f_i is affected by other examples in the batch. (The gradient becomes larger when f_i is harder than others.)

Comparison to Proxy NCA

Uniform scale for all gradients

Scales weighted by relative hardness

In the case of negative examples

Proxy NCA

Pushing only a small number of data with uniform strength

Proxy Anchor

Pushing all data with consideration of their distribution

Complexity Analysis

Туре	Loss	Training Complexity		The same complexity, but		
Proxy	Proxy Anchor	O(MC)	Η.	Proxy Anchor converges		
	Proxy NCA ^[6]	<i>O</i> (<i>MC</i>) –		faster & performs better		
	SoftTriplet ^[8]	$O(MCU^2)$		hardness of data.		
Pair	Contrastive ^[4]	$O(M^2)$				
	Triplet ^[1]	$O(M^3)$		M: # of data		
	N-pair ^[5]	$O(M^3)$		C: # of classes ($C \ll M$)		
	Lifted Structure ^[7]	$O(M^3)$		U: # of proxies per class		

- [1] FaceNet: A unified embedding for face recognition and clustering, CVPR 2015
- [4] Learning a similarity metric discriminatively with application to face verification, CVPR 2005
- [5] Improved deep metric learning with multi-class N-pair loss objective, NeurIPS 2016
- [6] No fuss distance metric learning using proxies, ICCV 2017
- [7] Deep metric learning via lifted structured feature embedding, CVPR 2016
- [8] Softtriple loss: Deep metric learning without triplet sampling, ICCV 2019

- Evaluation on the 4 image retrieval benchmarks
 - Caltech-UCSD Bird 200 (CUB-200-2011)
 - Cars-196
 - Stanford Online Product (SOP)
 - In-Shop Clothes Retrieval (In-Shop)
- Proxy setting: 1 proxy per class
- Image setting
 - Default: 224 X 224 (as in most previous work)
 - Larger: 256 X 256 (for comparison to HORDE^[9])
- Hyper-parameters: $\alpha = 32, \delta = 10^{-1}$

• Quantitative results on the CUB-200-2011 and Cars-196

		CUB-200-2011			Cars-196				
Recall@K		1	2	4	8	1	2	4	8
Clustering ⁶⁴	BN	48.2	61.4	71.8	81.9	58.1	70.6	80.3	87.8
Proxy-NCA ⁶⁴	BN	49.2	61.9	67.9	72.4	73.2	82.4	86.4	87.8
Smart Mining ⁶⁴	G	49.8	62.3	74.1	83.3	64.7	76.2	84.2	90.2
MS^{64}	BN	57.4	69.8	80.0	87.8	77.3	85.3	90.5	94.2
SoftTriple ⁶⁴	BN	<u>60.1</u>	71.9	<u>81.2</u>	<u>88.5</u>	<u>78.6</u>	86.6	<u>91.8</u>	<u>95.4</u>
Proxy-Anchor ⁶⁴	BN	61.7	73.0	81.8	88.8	78.8	87.0	92.2	95.5
Margin ¹²⁸	R50	63.6	74.4	83.1	90.0	79.6	86.5	91.9	95.1
HDC^{384}	G	53.6	65.7	77.0	85.6	73.7	83.2	89.5	93.8
$A-BIER^{512}$	G	57.5	68.7	78.3	86.2	82.0	89.0	93.2	96.1
ABE^{512}	G	60.6	71.5	79.8	87.4	85.2	90.5	94.0	96.1
HTL^{512}	BN	57.1	68.8	78.7	86.5	81.4	88.0	92.7	95.7
$RLL-H^{512}$	BN	57.4	69.7	79.2	86.9	74.0	83.6	90.1	94.1
MS^{512}	BN	<u>65.7</u>	77.0	86.3	91.2	84.1	90.4	94.0	96.5
SoftTriple ⁵¹²	BN	65.4	76.4	84.5	90.4	84.5	<u>90.7</u>	<u>94.5</u>	<u>96.9</u>
Proxy-Anchor ⁵¹²	BN	68.4	79.2	86.8	91.6	86.1	91.7	95.0	97.3
[†] Contra+HORDE ^{512}	BN	66.3	76.7	84.7	90.6	83.9	90.3	94.1	96.3
[†] Proxy-Anchor ⁵¹²	BN	71.1	80.4	87.4	92.5	88.3	93.1	95.7	97.5

• Quantitative results on the SOP (*left*) and In-Shop (*right*)

Recall@K	1	10	100	1000
Clustering ⁶⁴	67.0	83.7	93.2	-
Proxy-NCA ⁶⁴	73.7	-	-	-
MS^{64}	74.1	87.8	94.7	98.2
SoftTriple ⁶⁴	<u>76.3</u>	89.1	95.3	-
Proxy-Anchor ⁶⁴	76.5	<u>89.0</u>	<u>95.1</u>	98.2
Margin ¹²⁸	72.7	86.2	93.8	98.0
HDC^{384}	69.5	84.4	92.8	97.7
A-BIER ⁵¹²	74.2	86.9	94.0	97.8
ABE^{512}	76.3	88.4	94.8	98.2
HTL^{512}	74.8	88.3	94.8	98.4
$RLL-H^{512}$	76.1	89.1	95.4	-
MS^{512}	78.2	<u>90.5</u>	<u>96.0</u>	98.7
SoftTriple ⁵¹²	<u>78.3</u>	90.3	95.9	-
Proxy-Anchor ⁵¹²	79.1	90.8	96.2	98.7
[†] Contra+HORDE ⁵¹²	80.1	91.3	96.2	98.7
[†] Proxy-Anchor ⁵¹²	80.3	91.4	96.4	98.7

Recall@K	1	10	20	40
HDC^{384}	62.1	84.9	89.0	92.3
HTL^{128}	80.9	94.3	95.8	97.4
MS^{128}	88.0	<u>97.2</u>	<u>98.1</u>	<u>98.7</u>
Proxy-Anchor ¹²⁸	90.8	97.9	98.5	99.0
FashionNet ⁴⁰⁹⁶	53.0	73.0	76.0	79.0
A-BIER ⁵¹²	83.1	95.1	96.9	97.8
ABE^{512}	87.3	96.7	97.9	98.5
MS^{512}	<u>89.7</u>	<u>97.9</u>	<u>98.5</u>	<u>99.1</u>
Proxy-Anchor ⁵¹²	91.5	98.1	98.8	99.1
[†] Contra+HORDE ^{512}	90.4	97.8	98.4	98.9
[†] Proxy-Anchor ⁵¹²	92.6	98.3	98.9	99.3

Our method achieves state-of-the-art performance in almost all settings on the all 4 benchmarks.

• Qualitative results: Top 4 retrievals

CUB-200-2011

Cars-196

• Qualitative results: Top 4 retrievals

SOP

In-Shop

• Impact of hyper-parameters

The performance is stable and high enough when the embedding dimension \geq 128 and $\alpha \geq$ 16.

• Ablation studies

						1	~	1.0.5	
Network	Image Size	CUB-200-2011			Cars-196				
Network		R@1	R@2	R@4	R@8	R@1	R@2	R@4	R@8
GoogleNet	224×224	63.8	74.4	83.6	90.4	84.3	90.4	94.1	96.7
Inception-BN		68.4	79.2	86.8	91.6	86.1	91.7	95.0	97.3
ResNet-50		69.7	80.0	87.0	92.4	87.7	92.9	95.8	97.9
ResNet-101		70.8	81.0	88.1	93.0	87.9	93.0	96.1	97.9
Inception-BN	256×256	71.1	80.4	87.4	92.5	88.3	93.1	95.7	97.5
	324×324	74.0	82.9	88.9	93.2	91.1	94.9	96.9	98.3
	448×448	77.3	85.6	91.1	94.2	92.9	96.1	97.7	98.7

Strong backbone and large input improve performance.

Conclusion

- Contributions
 - A new metric learning loss based on proxy
 - Current state of the art on public benchmarks for image retrieval
 - Fastest convergence speed
- Future directions
 - Analysis on generalizability
 - Improving test time efficiency

Deep Metric Learning Beyond Binary Supervision

Sungyeon Kim Minkyo Seo Ivan Laptev Minsu Cho Suha Kwak {tjddus9597, mkseo, mscho, suha.kwak}@postech.ac.kr, ivan.laptev@inria.fr

- A common issue
 - Existing (deep) metric learning approaches rely on binary relations between images: "same" or "not".

Face verification

Person re-identification

- A common issue
 - However, relations between real world images are *not binary* but often represented as *continuous similarities*.

- Conventional methods to handle the issue
 - Existing metric learning loss + *similarity quantization*

Binary thresholding^[9]

Populations of positive and negative examples would be significantly imbalanced.

Nearest neighbor search^[10]

Positive neighbors of a rare example would be dissimilar and negative neighbors of a common example would be too similar.

[9] Pose embeddings: A deep architecture for learning to match human poses, arXiv 2015[10] Thin-slicing for pose: Learning to understand pose without explicit pose estimation, CVPR 2016

- Conventional methods to handle the issue
 - Degree of similarity is ignored in the learned embedding space.

Our Method

- Our goal
 - Learning a metric space that reflects the degree of similarity directly

Our Method

- Our goal
 - Learning a metric space that reflects the degree of similarity directly
- Contributions
 - A new triplet loss: *Log-ratio loss*
 - A new triplet sampling technique: *Dense triplet sampling*
 - Various applications
 - Human pose retrieval
 - Room layout retrieval
 - Caption-aware image retrieval
 - Representation learning for image captioning

Definition

$$\ell_{\mathrm{lr}}(a,i,j) = \left\{ \log \frac{D(f_a, f_i)}{D(f_a, f_j)} - \log \frac{D_y(y_a, y_i)}{D_y(y_a, y_j)} \right\}^2$$

where $f_i \coloneqq f(\mathbf{x}_i)$ is the embedding vector of image i, and $D(\cdot)$ denotes the squared Euclidean distance.

The distance between two images in the learned metric space will be proportional to their distance in the label space.

• Analysis on its gradients

$\partial \ell_{\mathrm{lr}}(a,i,j)$	$\partial \ell_{\mathrm{lr}}(a,i,j)$	$\partial \ell_{\mathrm{lr}}(a,i,j)$
∂f_a	∂f_i	∂f_j
$\frac{\partial \ell_{\rm lr}(a,i,j)}{\partial f_i} =$	$= \frac{(f_i - f_a)}{D(f_a, f_i)} \cdot \ell'_{\rm lr}(a)$	a, i, j)
$\frac{\partial \ell_{\rm lr}(a,i,j)}{\partial f_j} =$	$= \frac{(f_a - f_j)}{D(f_a, f_j)} \cdot \ell'_{\rm lr}($	a, i, j)

Direction between the anchor and neighbors

Discrepancy between the label distance ratio and the embedding distance ratio

$$4\left\{\log\frac{D(f_a, f_i)}{D(f_a, f_j)} - \log\frac{D_y(\boldsymbol{y}_a, \boldsymbol{y}_i)}{D_y(\boldsymbol{y}_a, \boldsymbol{y}_j)}\right\}$$

• Comparison to the triplet rank loss

Log-ratio loss $\ell_{\mathrm{lr}}(a,i,j) = \left\{ \log \frac{D(f_a,f_i)}{D(f_a,f_i)} - \log \frac{D(y_a,y_i)}{D(y_a,y_i)} \right\}^2$ $\frac{\partial \ell_{\mathrm{lr}}(a,i,j)}{\partial f_a} = -\frac{\partial \ell_{\mathrm{lr}}(a,i,j)}{\partial f_i} - \frac{\partial \ell_{\mathrm{lr}}(a,i,j)}{\partial f_i}$ $\frac{\partial \ell_{\mathrm{lr}}(a,i,j)}{\partial f_i} = \frac{(f_i - f_a)}{D(f_a, f_i)} \cdot \ell'_{\mathrm{lr}}(a,i,j)$ $\frac{\partial \ell_{\mathrm{lr}}(a,i,j)}{\partial f_{i}} = \frac{\left(f_{a} - f_{j}\right)}{D\left(f_{a} - f_{i}\right)} \cdot \ell_{\mathrm{lr}}'(a,i,j)$

Although the rank constraint holds, the gradients' magnitudes could be significant if $\ell'_{lr}(a, i, j)$ is large. Triplet rank loss $\ell_{\rm tri}(a,i,j) = \left[D(f_a,f_i) - D(f_a,f_j) + \delta\right]_+$

$$\frac{\partial \ell_{\mathrm{tri}}(a,i,j)}{\partial f_a} = -\frac{\partial \ell_{\mathrm{tri}}(a,i,j)}{\partial f_i} - \frac{\partial \ell_{\mathrm{tri}}(a,i,j)}{\partial f_j}$$
$$\frac{\partial \ell_{\mathrm{tri}}(a,i,j)}{\partial f_i} = 2(f_i - f_a) \cdot \mathbb{I}(\ell_{\mathrm{tri}}(a,i,j) > 0)$$
$$\frac{\partial \ell_{\mathrm{tri}}(a,i,j)}{\partial f_j} = 2(f_a - f_j) \cdot \mathbb{I}(\ell_{\mathrm{tri}}(a,i,j) > 0)$$

The gradients are zero if the triplet satisfies the rank constraint due to the indicator $\mathbb{I}(\ell_{\mathrm{tri}}(a, i, j) > 0)$.

- Compared to the triplet rank loss, our loss
 - Captures continuous similarities between images better, (the triplet rank loss focuses only on partial ranks of similarities.)
 - Does not require any hyperparameter, (for the triplet rank loss the margin should be tuned carefully.)
 - Does not demand L_2 normalization of the embedding vectors, (such a normalization is essential for the triplet rank loss.)
 - Performs much better with a low embedding dimension.

Dense Triplet Sampling

• Main idea: Using all triplets within a minibatch

Dense Triplet Sampling

- Why not using existing sampling techniques^[1,11]
 - They rely on binary relations between images.
 - They are designed to be combined with conventional triplet losses.
 - The notion of hardness is not clear in our setting.
- Our sampling strategy is well matched with the log-ratio loss.
 - The log-ratio loss enables every triplet to well contribute to training.

 $\frac{\partial \ell_{\mathrm{lr}}(a,i,j)}{\partial f_{i}} = \frac{(f_{i} - f_{a})}{D(f_{a},f_{i})} \cdot 4\left\{\log \frac{D(f_{a},f_{i})}{D(f_{a},f_{i})} - \log \frac{D_{y}(y_{a},y_{i})}{D_{y}(y_{a},y_{i})}\right\}$ Non-trivial even if the triplet complies the rank constraint

• Exploiting all triplets improves embedding performance.

[1] FaceNet: A unified embedding for face recognition and clustering, CVPR 2015 [11] Sampling matters in deep embedding learning, ICCV 2017

• Human pose retrieval

- Conducted on the MPII human pose dataset
- Application: *pose-aware representation for action recognition*
- Label distance between images:

$$D_{\boldsymbol{y}}(\boldsymbol{y}_i, \boldsymbol{y}_j) = \|\boldsymbol{y}_i - \boldsymbol{y}_j\|_2^2.$$

• Human pose retrieval

[10] Thin-slicing for pose: Learning to understand pose without explicit pose estimation, CVPR 2016

• Human pose retrieval

• Room layout retrieval

- Conducted on the LSUN room layout dataset
- Label distance between images:

$$D_{\mathbf{y}}(\mathbf{y}_i, \mathbf{y}_j) = 1 - \mathrm{mIoU}(\mathbf{y}_i, \mathbf{y}_j),$$

where y_i and y_j denote groundtruth room segmentations

• Room layout retrieval

Query

Top-3 retrievals

Top-3 retrievals

<u>Binary Tri.</u>: Triplet rank loss + Binary thresholding <u>**ImgNet**</u>: ImageNet pre-trained ResNet101

Caption-aware image retrieval

- Conducted on the MS-COCO 2014 caption dataset
- Label distance between images:

$$D_{\mathbf{y}}(\mathbf{y}_i, \mathbf{y}_j) = \sum_{c_i \in \mathbf{y}_i} \min_{c_j \in \mathbf{y}_j} W(c_i, c_j) + \sum_{c_j \in \mathbf{y}_j} \min_{c_i \in \mathbf{y}_i} W(c_i, c_j),$$

where y_i and y_j are sets of 5 captions and $W(\cdot)$ is the WMD^[12] between two captions

• Caption-aware image retrieval

Query

Ours

Binary Tri

Top-3 retrievals

Query

<u>Binary Tri.</u>: Triplet rank loss + Binary thresholding <u>ImgNet</u>: ImageNet pre-trained ResNet101

• Caption-aware image retrieval

Query

Top-3 retrievals

<u>Binary Tri.</u>: Triplet rank loss + Binary thresholding <u>ImgNet</u>: ImageNet pre-trained ResNet101

• Quantitative performance analysis

• Embedding dimension vs. retrieval performance

<u>L(Log-ratio) + M(Dense)</u>: Log-ratio loss + Dense triplet sampling <u>L(Triplet) + M(Dense)</u>: Triplet rank loss + Dense triplet sampling

Experiments – Representation Learning

• Representation learning for image captioning

Our approach

Using the caption embedding network trained with caption similarities as an initial visual representation for image captioning

Experiments – Representation Learning

• Quantitative results

[13] Self-critical sequence training for image captioning, CVPR 2017[14] Bottom-up and top-down attention for image captioning and visual question answering, CVPR 2018

Experiments – Representation Learning

• Qualitative results obtained by the top-down attention model

GT1	There are some zebras standing in a grassy field
GT2	A field with tall grass, bushes and trees, that has zebra standing in the field
Img XE	A group of zebras grazing in a field
Cap XE	Two zebras are standing in a grassy field
Img RL	A group of zebras are grazing in a field
Cap RL	A couple of zebras and a zebra standing in a field

GT1	A baseball batter swinging a bat over home plate
GT2	A baseball player swings a bat at a game
Img XE	A baseball player holding a bat on a field
Cap XE	A baseball player swinging a bat on top of a field
Img RL	A baseball player holding a bat on a field
Cap RL	A baseball player swinging a bat at a ball

Conclusion

- Summary
 - A new framework for metric learning with continuous labels
 - Various applications including visual representation learning
 - Performance boost over existing approaches
- Future directions
 - A better distance metric for continuous and structured labels
 - A hard triplet mining technique for continuous metric learning
 - More applications of semantic nearest neighbor search
 - A new benchmark for continuous metric learning

References

- [1] FaceNet: A unified embedding for face recognition and clustering, CVPR 2015
- [2] Beyond triplet loss: A deep quadruplet network for person re-identification, CVPR 2017
- [3] Learning to compare image patches via convolutional neural networks, CVPR 2015
- [4] Learning a similarity metric discriminatively with application to face verification, CVPR 2005
- [5] Improved deep metric learning with multi-class N-pair loss objective, NeurIPS 2016
- [6] No fuss distance metric learning using proxies, ICCV 2017
- [7] Deep metric learning via lifted structured feature embedding, CVPR 2016
- [8] Softtriple loss: Deep metric learning without triplet sampling, ICCV 2019
- [9] Pose embeddings: A deep architecture for learning to match human poses, arXiv 2015
- [10] Thin-slicing for pose: Learning to understand pose without explicit pose estimation, CVPR 2016
- [11] Sampling matters in deep embedding learning, ICCV 2017
- [12] From word embeddings to document distances, ICML 2015
- [13] Self-critical sequence training for image captioning, CVPR 2017
- [14] Bottom-up and top-down attention for image captioning and visual question answering, CVPR 2018

