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Metric Learning

How much similar/dissimilar semantically?

Metric: Function that quantifies a distance

,
𝐷

,
𝐷 <

Metric Learning: Learning a metric from a set of data



Applications
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Content-based image retrieval Face verification/identification[1]

[1] FaceNet: A unified embedding for face recognition and clustering, CVPR 2015



Applications
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Person re-identification[2] Patch matching/stereo imaging[3]

[2] Beyond triplet loss: a deep quadruplet network for person re-identification, CVPR 2017
[3] Learning to compare image patches via convolutional neural networks, CVPR 2015
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Deep Metric Learning
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𝐱𝑖 𝑓 𝐱𝑖

𝐱𝑗 𝑓 𝐱𝑗

𝐱𝑘 𝑓 𝐱𝑘

Learning a deep embedding network 𝑓 so that 
semantically similar images are closely grouped together

Distance = Semantic dissimilarity

This quality of the embedding 
space is mainly determined by 

loss functions used for 
training the network.
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• Triplet rank loss[1]

ℝ𝑑

Well-known Examples of Metric Learning Losses
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𝐱𝑎 𝑓 𝐱𝑎

𝐱𝑝 𝑓 𝐱𝑝

𝐱𝑛 𝑓 𝐱𝑛

ℓtri 𝑎, 𝑝, 𝑛 = 𝐷 𝑓𝑎, 𝑓𝑝 − 𝐷 𝑓𝑎 , 𝑓𝑛 + 𝛿
+

[1] FaceNet: A unified embedding for face recognition and clustering, CVPR 2015

𝐷 𝑓 𝐱𝑎 , 𝑓 𝐱𝑝 < 𝐷 𝑓 𝐱𝑎 , 𝑓 𝐱𝑛

Anchor

Positive

Negative



• Proxy NCA loss[6]

ℝ𝑑

Well-known Examples of Metric Learning Losses
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𝐱𝑖 𝑓 𝐱𝑖

𝐱𝑗 𝑓 𝐱𝑗

𝐱𝑘 𝑓 𝐱𝑘

ℓproxyNCA 𝐵 = σ𝑖∈𝐵 𝐷 𝑓𝑖 , 𝑝
+ − logσ𝑝−∈𝑃− exp −𝐷 𝑓𝑖 , 𝑝

−

[6] No fuss distance metric learning using proxies, ICCV 2017

Robert Downey Jr

Chris Hemsworth



Two Categories of Existing Metric Learning Losses

• Pair-based losses
• (+) Exploiting data-to-data relations, fine-grained relations between data

• (–) Prohibitively high training complexity

• Examples
• Contrastive loss[4]

ℓctr 𝑖, 𝑗 = 𝑦𝑖𝑗𝐷 𝑓𝑖 , 𝑓𝑗
2
+ 1 − 𝑦𝑖𝑗 𝛿 − 𝐷(𝑓𝑖 , 𝑓𝑗) +

2

• Triplet rank loss[1]

ℓtri 𝑎, 𝑝, 𝑛 = 𝐷 𝑓𝑎, 𝑓𝑝 − 𝐷 𝑓𝑎 , 𝑓𝑛 + 𝛿
+

• N-pair loss[5]

ℓNP 𝑎, 𝑝, 𝑛1, … , 𝑛𝑁−1 = log 1 + σ𝑖=1
𝑁−1 exp 𝐷 𝑓𝑎 , 𝑓𝑝 − 𝐷 𝑓𝑎 , 𝑓𝑛𝑖
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[1] FaceNet: A unified embedding for face recognition and clustering, CVPR 2015
[4] Learning a similarity metric discriminatively with application to face verification, CVPR 2005
[5] Improved deep metric learning with multi-class N-pair loss objective, NeurIPS 2016



Two Categories of Existing Metric Learning Losses

• Proxy-based losses
• Proxy

• Representative of a subset of training data

• Learned as a part of the network parameters

• Taking each data point as an anchor and associating it with proxies

• (+) Lower training complexity, faster convergence in general

• (+) More robust against label noises and outliers

• (–) Leveraging impoverished data-to-proxy relations only

• Example: Proxy-NCA loss[6]
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ℓproxyNCA 𝐵 = −෍

𝑖∈𝐵

log
exp −𝐷 𝑓𝑖 , 𝑝

+

σ𝑝−∈𝑃− exp −𝐷 𝑓𝑖 , 𝑝
−

[6] No fuss distance metric learning using proxies, ICCV 2017



Two Categories of Existing Metric Learning Losses
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Triplet rank loss N-pair loss

“Data-to-data relations”
Rich and fine-grained

Demanding high training complexity

Proxy-NCA loss

“Data-to-proxy relations”
Reducing training complexity

Impoverished information

Pair-based losses Proxy-based losses



Our Method

• A new proxy-based loss called proxy anchor loss
• Taking only advantages of both categories

• Overcoming their limitations

• How it works
• Using a proxy as an anchor, and associating it with all data in a batch

• Fast convergence thanks to the use of proxies

• Taking data-to-data relations into account by allowing data points to 
interact with each other during training

• Results
• State-of-the-art performance

• Fastest convergence (on the Cars-196 dataset)

12



Our Method
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Recall@1 vs. training epochs on the Cars-196 dataset 



Details of Proxy Anchor Loss

• Mathematical form and its interpretation
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ℓ 𝐵 =
1

𝑃+
෍

𝑝∈𝑃+

log 1 + ෍

𝑖∈𝐵𝑝
+

exp −𝛼 𝑆 𝑓𝑖 , 𝑝 − 𝛿

+
1

𝑃
෍

𝑝∈𝑃

log 1 + ෍

𝑗∈𝐵𝑝
−

exp 𝛼 𝑆 𝑓𝑗 , 𝑝 + 𝛿

ℓ 𝑋 =
1

𝑃+
෍

𝑝∈𝑃+

SoftPlus LSE
𝑖∈𝐵𝑝

+
−𝛼 𝑆 𝑓𝑖 , 𝑝 − 𝛿

+
1

𝑃
෍

𝑝∈𝑃

SoftPlus LSE
𝑗∈𝐵𝑝

−
𝛼 𝑆 𝑓𝑗 , 𝑝 + 𝛿

𝑆 ⋅,⋅
Cosine similarity 

SoftPlus
A smooth approx. 
of ReLU

LSE
A smooth approx. 
of MAX 



Details of Proxy Anchor Loss

• Mathematical form and its interpretation
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ℓ 𝐵 =
1

𝑃+
෍

𝑝∈𝑃+

SoftPlus LSE
𝑖∈𝐵𝑝

+
−𝛼 𝑆 𝑓𝑖 , 𝑝 − 𝛿

+
1

𝑃
෍

𝑝∈𝑃

SoftPlus LSE
𝑖∈𝐵𝑝

−
𝛼 𝑆 𝑓𝑗 , 𝑝 + 𝛿

Regarding LSE as MAX: pull 𝑝 and its hardest positive example together,
push 𝑝 and its hardest negative example apart.

In practice pull/push all embedding vectors in the batch, but with different 
degrees of strength determined by their relative hardness. 



Details of Proxy Anchor Loss

• Analysis on its gradients
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𝜕ℓ 𝐵

𝜕𝑆(𝑓𝑖 , 𝑝)
=

1

𝑃+
−𝛼 ℎ𝑝

+(𝑓𝑖)

1 + σ
𝑗∈𝐵𝑝

+ ℎ𝑝
+(𝑓𝑗)

, ∀𝑖 ∈ 𝐵𝑝
+,

1

𝑃

𝛼 ℎ𝑝
−(𝑓𝑖)

1 + σ𝑘∈𝐵𝑝
− ℎ𝑝

−(𝑓𝑘)
, ∀𝑖 ∈ 𝐵𝑝

−,

ℎ𝑝
+ 𝑓 = exp −𝛼 𝑆 𝑓, 𝑝 − 𝛿 : Positive hardness metric

ℎ𝑝
− 𝑓 = exp 𝛼 𝑆 𝑓, 𝑝 + 𝛿 : Negative hardness metric

where

The gradient w.r.t. 𝑓𝑖 is affected by other examples in the batch.
(The gradient becomes larger when 𝑓𝑖 is harder than others.)



Comparison to Proxy NCA
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In the case of positive examples In the case of negative examples

Proxy NCA Proxy Anchor Proxy NCA Proxy Anchor

Uniform scale 
for all gradients

Scales weighted by 
relative hardness

Pushing only a small 
number of data with 

uniform strength

Pushing all data with 
consideration of their 

distribution



Complexity Analysis
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Type Loss Training Complexity

Proxy

Proxy Anchor 𝑂(𝑀𝐶)

Proxy NCA[6] 𝑂(𝑀𝐶)

SoftTriplet[8] 𝑂(𝑀𝐶𝑈2)

Pair

Contrastive[4] 𝑂(𝑀2)

Triplet[1] 𝑂(𝑀3)

N-pair[5] 𝑂(𝑀3)

Lifted Structure[7] 𝑂(𝑀3)

[1] FaceNet: A unified embedding for face recognition and clustering, CVPR 2015
[4] Learning a similarity metric discriminatively with application to face verification, CVPR 2005
[5] Improved deep metric learning with multi-class N-pair loss objective, NeurIPS 2016
[6] No fuss distance metric learning using proxies, ICCV 2017
[7] Deep metric learning via lifted structured feature embedding, CVPR 2016
[8] Softtriple loss: Deep metric learning without triplet sampling, ICCV 2019

𝑀: # of data

𝐶: # of classes (𝐶 ≪ 𝑀)

𝑈: # of proxies per class

The same complexity, but
Proxy Anchor converges
faster & performs better
since it considers relative
hardness of data.



Experiments

• Evaluation on the 4 image retrieval benchmarks
• Caltech-UCSD Bird 200 (CUB-200-2011)

• Cars-196

• Stanford Online Product (SOP)

• In-Shop Clothes Retrieval (In-Shop)

• Proxy setting: 1 proxy per class

• Image setting
• Default: 224 X 224 (as in most previous work)

• Larger: 256 X 256 (for comparison to HORDE[9])

• Hyper-parameters: 𝛼 = 32, 𝛿 = 10−1

19[9] High-order regularizer for deep embeddings, ICCV 2019



Experiments

• Quantitative results on the CUB-200-2011 and Cars-196

20



Experiments

• Quantitative results on the SOP (left) and In-Shop (right)

21

Our method achieves state-of-the-art 
performance in almost all settings 

on the all 4 benchmarks. 



Experiments

• Qualitative results: Top 4 retrievals

22

CUB-200-2011 Cars-196



Experiments

• Qualitative results: Top 4 retrievals

23

SOP In-Shop



Experiments

• Impact of hyper-parameters

24

Accuracy vs. embedding dimension Accuracy vs. 𝛼 and 𝛿

The performance is stable and high enough
when the embedding dimension ≥ 128 and 𝛼 ≥ 16.



Experiments

• Ablation studies

25

Strong backbone and large input improve performance.



Conclusion

• Contributions 
• A new metric learning loss based on proxy

• Current state of the art on public benchmarks for image retrieval

• Fastest convergence speed

• Future directions
• Analysis on generalizability

• Improving test time efficiency

26



Deep Metric Learning 
Beyond Binary Supervision

Sungyeon Kim     Minkyo Seo Ivan Laptev     Minsu Cho     Suha Kwak
{tjddus9597, mkseo, mscho, suha.kwak}@postech.ac.kr,   ivan.laptev@inria.fr
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• A common issue
• Existing (deep) metric learning approaches rely on binary relations 

between images: “same” or “not”.

Existing Losses in Deep Metric Learning

Face verification

Content-based image retrieval Person re-identification
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Existing Losses in Deep Metric Learning

• A common issue
• However, relations between real world images are not binary but often 

represented as continuous similarities.

1.65

1.47

3.412.86

0.26

0.41

0.290.34
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• Conventional methods to handle the issue
• Existing metric learning loss + similarity quantization

Existing Losses in Deep Metric Learning

Binary thresholding[9]

Populations of positive and 
negative examples would be 

significantly imbalanced.

Nearest neighbor search[10]

Positive neighbors of a rare 
example would be dissimilar and 
negative neighbors of a common 

example would be too similar.

[9] Pose embeddings: A deep architecture for learning to match human poses, arXiv 2015
[10] Thin-slicing for pose: Learning to understand pose without explicit pose estimation, CVPR 2016
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• Conventional methods to handle the issue
• Degree of similarity is ignored in the learned embedding space.

Existing Losses in Deep Metric Learning
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Our Method

• Our goal
• Learning a metric space that reflects the degree of similarity directly



Our Method

• Our goal
• Learning a metric space that reflects the degree of similarity directly

• Contributions
• A new triplet loss: Log-ratio loss

• A new triplet sampling technique: Dense triplet sampling

• Various applications
• Human pose retrieval

• Room layout retrieval

• Caption-aware image retrieval

• Representation learning for image captioning

33



Log-ratio Loss

• Definition

34

𝐱𝑎 𝒚𝑎 𝐱𝑖 𝒚𝑖 𝐱𝑗 𝒚𝑗

where 𝑓𝑖 ≔ 𝑓(𝐱𝑖) is the embedding vector of image 𝑖,
and 𝐷 ⋅ denotes the squared Euclidean distance.

ℓlr 𝑎, 𝑖, 𝑗 = log
𝐷 𝑓𝑎 , 𝑓𝑖

𝐷 𝑓𝑎 , 𝑓𝑗
− log

𝐷𝒚 𝒚𝑎 , 𝒚𝑖

𝐷𝒚 𝒚𝑎, 𝒚𝑗

2

The distance between two images in the learned metric space
will be proportional to their distance in the label space. 
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• Analysis on its gradients

Log-ratio Loss

𝜕ℓlr 𝑎, 𝑖, 𝑗

𝜕𝑓𝑖
=

𝑓𝑖 − 𝑓𝑎
𝐷 𝑓𝑎, 𝑓𝑖

⋅ ℓlr
′ 𝑎, 𝑖, 𝑗

𝜕ℓlr 𝑎, 𝑖, 𝑗

𝜕𝑓𝑗
=

𝑓𝑎 − 𝑓𝑗

𝐷 𝑓𝑎, 𝑓𝑗
⋅ ℓlr

′ 𝑎, 𝑖, 𝑗

𝜕ℓlr 𝑎, 𝑖, 𝑗

𝜕𝑓𝑎
= −

𝜕ℓlr 𝑎, 𝑖, 𝑗

𝜕𝑓𝑖
−
𝜕ℓlr 𝑎, 𝑖, 𝑗

𝜕𝑓𝑗

4 log
𝐷 𝑓𝑎, 𝑓𝑖

𝐷 𝑓𝑎, 𝑓𝑗
− log

𝐷𝒚 𝒚𝑎, 𝒚𝑖

𝐷𝒚 𝒚𝑎, 𝒚𝑗

Discrepancy between 
the label distance ratio and

the embedding distance ratio

Direction between
the anchor and neighbors
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• Comparison to the triplet rank loss

Log-ratio Loss

𝜕ℓlr 𝑎, 𝑖, 𝑗

𝜕𝑓𝑖
=

𝑓𝑖 − 𝑓𝑎
𝐷 𝑓𝑎, 𝑓𝑖

⋅ ℓlr
′ 𝑎, 𝑖, 𝑗

𝜕ℓlr 𝑎, 𝑖, 𝑗

𝜕𝑓𝑗
=

𝑓𝑎 − 𝑓𝑗

𝐷 𝑓𝑎, 𝑓𝑗
⋅ ℓlr

′ 𝑎, 𝑖, 𝑗

𝜕ℓlr 𝑎, 𝑖, 𝑗

𝜕𝑓𝑎
= −

𝜕ℓlr 𝑎, 𝑖, 𝑗

𝜕𝑓𝑖
−
𝜕ℓlr 𝑎, 𝑖, 𝑗

𝜕𝑓𝑗

ℓlr 𝑎, 𝑖, 𝑗 = log
𝐷 𝑓𝑎, 𝑓𝑖

𝐷 𝑓𝑎, 𝑓𝑗
− log

𝐷 𝑦𝑎, 𝑦𝑖

𝐷 𝑦𝑎 , 𝑦𝑗

2

Log-ratio loss

Although the rank constraint holds, 
the gradients’ magnitudes could 

be significant if ℓlr
′ 𝑎, 𝑖, 𝑗 is large.

The gradients are zero if the triplet 
satisfies the rank constraint due to
the indicator 𝕀 ℓtri 𝑎, 𝑖, 𝑗 > 0 .

𝜕ℓtri 𝑎, 𝑖, 𝑗

𝜕𝑓𝑖
= 2 𝑓𝑖 − 𝑓𝑎 ⋅ 𝕀 ℓtri 𝑎, 𝑖, 𝑗 > 0

𝜕ℓtri 𝑎, 𝑖, 𝑗

𝜕𝑓𝑗
= 2 𝑓𝑎 − 𝑓𝑗 ⋅ 𝕀 ℓtri 𝑎, 𝑖, 𝑗 > 0

𝜕ℓtri 𝑎, 𝑖, 𝑗

𝜕𝑓𝑎
= −

𝜕ℓtri 𝑎, 𝑖, 𝑗

𝜕𝑓𝑖
−
𝜕ℓtri 𝑎, 𝑖, 𝑗

𝜕𝑓𝑗

ℓtri 𝑎, 𝑖, 𝑗 = 𝐷 𝑓𝑎, 𝑓𝑖 − 𝐷 𝑓𝑎, 𝑓𝑗 + 𝛿
+

Triplet rank loss



Log-ratio Loss

• Compared to the triplet rank loss, our loss
• Captures continuous similarities between images better,

(the triplet rank loss focuses only on partial ranks of similarities.)

• Does not require any hyperparameter,
(for the triplet rank loss the margin should be tuned carefully.)

• Does not demand 𝐿2 normalization of the embedding vectors, 
(such a normalization is essential for the triplet rank loss.)

• Performs much better with a low embedding dimension.

37



ℓlr 𝑎, 𝑖, 𝑗 …ℓlr 𝑎, 𝑖, 𝑗 ℓlr 𝑎, 𝑖, 𝑗…

……

Sampling all triplets by choosing every pair of neighbors

Dense Triplet Sampling

• Main idea: Using all triplets within a minibatch

38

𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 𝑓

Anchor Nearest neighbors Randomly sampled neighbors
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• Why not using existing sampling techniques[1,11]

• They rely on binary relations between images.

• They are designed to be combined with conventional triplet losses.

• The notion of hardness is not clear in our setting.

• Our sampling strategy is well matched with the log-ratio loss.
• The log-ratio loss enables every triplet to well contribute to training.

• Exploiting all triplets improves embedding performance.

Dense Triplet Sampling

[1] FaceNet: A unified embedding for face recognition and clustering, CVPR 2015
[11] Sampling matters in deep embedding learning, ICCV 2017

𝜕ℓlr 𝑎, 𝑖, 𝑗

𝜕𝑓𝑖
=

𝑓𝑖 − 𝑓𝑎
𝐷 𝑓𝑎 , 𝑓𝑖

⋅ 4 log
𝐷 𝑓𝑎 , 𝑓𝑖

𝐷 𝑓𝑎 , 𝑓𝑗
− log

𝐷𝒚 𝒚𝑎, 𝒚𝑖

𝐷𝒚 𝒚𝑎, 𝒚𝑗

Non-trivial even if the triplet 
complies the rank constraint



• Human pose retrieval

• Conducted on the MPII human pose dataset

• Application: pose-aware representation for action recognition

• Label distance between images:

Experiments – Three Retrieval Tasks

40

𝐱 𝒚 Query Retrieval results

Training Testing

𝐷𝒚 𝒚𝑖 , 𝒚𝑗 = 𝒚𝑖 − 𝒚𝑗 2

2
.



Experiments – Three Retrieval Tasks

• Human pose retrieval

41

Thin-slicing[10]: A previous 
work on pose embedding

ResNet34: ImageNet 
pre-trained network

[10] Thin-slicing for pose: Learning to understand pose without explicit pose estimation, CVPR 2016

Typically focuses on 
objects or background 
other than human poses.

Often fails to address rare 
human poses.



Experiments – Three Retrieval Tasks

• Human pose retrieval

42



• Room layout retrieval

• Conducted on the LSUN room layout dataset

• Label distance between images:

Experiments – Three Retrieval Tasks

43

𝐱 𝒚 Query Retrieval results

Training Testing

𝐷𝒚 𝒚𝑖 , 𝒚𝑗 = 1 −mIoU 𝒚𝑖 , 𝒚𝑗 ,

where 𝒚𝑖 and 𝒚𝑗 denote groundtruth room segmentations



Experiments – Three Retrieval Tasks

• Room layout retrieval

44

Query Top-3 retrievals Query Top-3 retrievals

Binary Tri.: Triplet rank loss + Binary thresholding
ImgNet: ImageNet pre-trained ResNet101



• Caption-aware image retrieval

• Conducted on the MS-COCO 2014 caption dataset

• Label distance between images:

Experiments – Three Retrieval Tasks

45

𝐷𝒚 𝒚𝑖 , 𝒚𝑗 = ෍

𝑐𝑖∈𝒚𝑖

min
𝑐𝑗∈𝒚𝑗

𝑊(𝑐𝑖 , 𝑐𝑗) + ෍

𝑐𝑗∈𝒚𝑗

min
𝑐𝑖∈𝒚𝑖

𝑊(𝑐𝑖 , 𝑐𝑗) ,

where 𝒚𝑖 and 𝒚𝑗 are sets of 5 captions and 𝑊(⋅) is the WMD[12] between two captions

[12] From word embeddings to document distances, ICML 2015

𝐱 𝒚 Query Retrieval results

Training Testing

A girl 
holding a 

frisbee



Experiments – Three Retrieval Tasks

• Caption-aware image retrieval

46

Query Top-3 retrievals Query Top-3 retrievals

Binary Tri.: Triplet rank loss + Binary thresholding
ImgNet: ImageNet pre-trained ResNet101



Experiments – Three Retrieval Tasks

• Caption-aware image retrieval

47

Query Top-3 retrievals Query Top-3 retrievals

Binary Tri.: Triplet rank loss + Binary thresholding
ImgNet: ImageNet pre-trained ResNet101



Experiments – Three Retrieval Tasks

• Quantitative performance analysis

48

[11]

[10]



Experiments – Three Retrieval Tasks

• Embedding dimension vs. retrieval performance

49

𝐿(Log-ratio) + 𝑀(Dense): Log-ratio loss + Dense triplet sampling

𝐿(Triplet) + 𝑀(Dense): Triplet rank loss + Dense triplet sampling



Experiments – Representation Learning

• Representation learning for image captioning

50

ImageNet 
pretrained CNN

Input Image
(HxWx3)

Feature Map
(14 x 14 x 2048)

Caption-aware 
representation

Our approach
Using the caption embedding network trained with caption similarities 

as an initial visual representation for image captioning

Att AttAtt Att



Experiments – Representation Learning

• Quantitative results

51

ATT: Att2all2 model[13]

TD: Top-down attention model[14]

XE: Pretrained with cross-entropy loss 
RL: Finetuned by reinforcement learning

[13] Self-critical sequence training for image captioning, CVPR 2017
[14] Bottom-up and top-down attention for image captioning  and visual question answering, CVPR 2018

1

34.65 in BLEU-4

Caption-aware feature + RL

33.48 in BLEU-4

ImageNet pretrained feature + RL

+3.5%

115.9 in CIDEr

Caption-aware feature + RL

113.1 in CIDEr

ImageNet pretrained feature + RL

+2.5%



Experiments – Representation Learning

• Qualitative results obtained by the top-down attention model
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GT1 There are some zebras standing in a grassy field

GT2 A field with tall grass, bushes and trees, that has zebra standing in the field

Img XE A group of zebras grazing in a field

Cap XE Two zebras are standing in a grassy field

Img RL A group of zebras are grazing in a field

Cap RL A couple of zebras and a zebra standing in a field

GT1 A baseball batter swinging a bat over home plate

GT2 A baseball player swings a bat at a game

Img XE A baseball player holding a bat on a field

Cap XE A baseball player swinging a bat on top of a field

Img RL A baseball player holding a bat on a field

Cap RL A baseball player swinging a bat at a ball



Conclusion

• Summary
• A new framework for metric learning with continuous labels

• Various applications including visual representation learning

• Performance boost over existing approaches

• Future directions
• A better distance metric for continuous and structured labels

• A hard triplet mining technique for continuous metric learning

• More applications of semantic nearest neighbor search

• A new benchmark for continuous metric learning
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